A Novel Contactless Blood Pressure Measurement System and Algorithm Based on Vision Intelligence

Author:

Khomidov Mavlonbek1,Lee Deokwoo1ORCID,Lee Jong-Ha2ORCID

Affiliation:

1. Department of Computer Engineering, Keimyung University, Daegu 42601, Republic of Korea

2. Department of Biomedical Engineering, Keimyung University, Daegu 42601, Republic of Korea

Abstract

The measurement of vital signs such as blood pressure plays a key role in human health. Usually, we encounter some problems when we check them in the traditional way; for example, it is impossible to check continuously, and measuring vital signs requires direct contact with the patient, which can be uncomfortable for certain individuals. In this research, we present a vision-based system for estimating blood pressure using pulse transit time (PTT) and the Eulerian video magnification (EVM) technique to amplify tiny color variations caused by blood flow to calculate arterial pulse waves traveling between two arterial sites. Calculating the PTT by processing the video signal for each subject, an oscillometer BP device was used to evaluate the performance between measurements in different conditions, including rest, exercise, and during recovery. Mean systolic BP was 115 mmHg at rest, 137 mmHg during high-intensity exercise, and 114 mmHg during recovery, respectively. The average value of diastolic blood pressure did not change significantly before, during, and after exercise. When we compared the systolic and diastolic blood pressure with ground-truth results, our system showed an accuracy of 91% for systolic blood pressure and 90% for diastolic blood pressure.

Funder

Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education

Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education

Korea Medical Device Development Fund grant provided by the Korea government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3