Multi-Label Diagnosis of Arrhythmias Based on a Modified Two-Category Cross-Entropy Loss Function

Author:

Zhu Junjiang1ORCID,Ma Cheng1ORCID,Zhang Yihui1ORCID,Huang Hao1,Kong Dongdong2,Ni Wangjin1

Affiliation:

1. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China

2. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China

Abstract

The 12-lead resting electrocardiogram (ECG) is commonly used in hospitals to assess heart health. The ECG can reflect a variety of cardiac abnormalities, requiring multi-label classification. However, the diagnosis results in previous studies have been imprecise. For example, in some previous studies, some cardiac abnormalities that cannot coexist often appeared in the diagnostic results. In this work, we explore how to realize the effective multi-label diagnosis of ECG signals and prevent the prediction of cardiac arrhythmias that cannot coexist. In this work, a multi-label classification method based on a convolutional neural network (CNN), long short-term memory (LSTM), and an attention mechanism is presented for the multi-label diagnosis of cardiac arrhythmia using resting ECGs. In addition, this work proposes a modified two-category cross-entropy loss function by introducing a regularization term to avoid the existence of arrhythmias that cannot coexist. The effectiveness of the modified cross-entropy loss function is validated using a 12-lead resting ECG database collected by our team. Using traditional and modified cross-entropy loss functions, three deep learning methods are employed to classify six types of ECG signals. Experimental results show the modified cross-entropy loss function greatly reduces the number of non-coexisting label pairs while maintaining prediction accuracy. Deep learning methods are effective in the multi-label diagnosis of ECG signals, and diagnostic efficiency can be improved by using the modified cross-entropy loss function. In addition, the modified cross-entropy loss function helps prevent diagnostic models from outputting two arrhythmias that cannot coexist, further reducing the false positive rate of non-coexisting arrhythmic diseases, thereby demonstrating the potential value of the modified loss function in clinical applications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3