Dwarf Mongoose Optimizer for Optimal Modeling of Solar PV Systems and Parameter Extraction

Author:

Moustafa Ghareeb1ORCID,Smaili Idris H.1,Almalawi Dhaifallah R.2,Ginidi Ahmed R.3ORCID,Shaheen Abdullah M.3ORCID,Elshahed Mostafa45ORCID,Mansour Hany S. E.6ORCID

Affiliation:

1. Electrical Engineering Department, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia

2. Department of Physics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

3. Department of Electrical Engineering, Faculty of Engineering, Suez University, Suez 43533, Egypt

4. Electrical Engineering Department, Engineering and Information Technology College, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia

5. Electrical Power Engineering Department, Faculty of Engineering, Cairo University, Cairo 12613, Egypt

6. Electrical Engineering Department, Suez Canal University, Ismailia 41522, Egypt

Abstract

This article presents a modified intelligent metaheuristic form of the Dwarf Mongoose Optimizer (MDMO) for optimal modeling and parameter extraction of solar photovoltaic (SPV) systems. The foraging manner of the dwarf mongoose animals (DMAs) motivated the DMO’s primary design. It makes use of distinct DMA societal groups, including the alpha category, scouts, and babysitters. The alpha female initiates foraging and chooses the foraging path, bedding places, and distance travelled for the group. The newly presented MDMO has an extra alpha-directed knowledge-gaining strategy to increase searching expertise, and its modifying approach has been led to some extent by the amended alpha. For two diverse SPV modules, Kyocera KC200GT and R.T.C. France SPV modules, the proposed MDMO is used as opposed to the DMO to efficiently estimate SPV characteristics. By employing the MDMO technique, the simulation results improve the electrical characteristics of SPV systems. The minimization of the root mean square error value (RMSE) has been used to compare the efficiency of the proposed algorithm and other reported methods. Based on that, the proposed MDMO outperforms the standard DMO. In terms of average efficiency, the MDMO outperforms the standard DMO approach for the KC200GT module by 91.7%, 84.63%, and 75.7% for the single-, double-, and triple-diode versions, respectively. The employed MDMO technique for the R.T.C France SPV system has success rates of 100%, 96.67%, and 66.67%, while the DMO’s success rates are 6.67%, 10%, and 0% for the single-, double-, and triple-diode models, respectively.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3