Inverse Design of a Microstrip Meander Line Slow Wave Structure with XGBoost and Neural Network

Author:

Zhu Yijun,Xie Yang,Bai NingfengORCID,Sun Xiaohan

Abstract

We present a new machine learning (ML) deep learning (DL) synthesis algorithm for the design of a microstrip meander line (MML) slow wave structure (SWS). Exact numerical simulation data are used in the training of our network as a form of supervised learning. The learning results show that the training mean squared error is as low as 5.23 × 10−2 when using 900 sets of data. When the desired performance is reached, workable geometry parameters can be obtained by this algorithm. A D-band MML SWS with 20 GHz bandwidth at 160 GHz center frequency is then designed using the auto-design neural network (ADNN). A cold test shows that its phase velocity varies by 0.005 c, and the transmission rate of a 50-period SWS is greater than −5 dB with the reflectivity below −15 dB when the frequency is from 150 to 170 GHz. Particle-in-cell (PIC) simulation also illustrates that a maximum power of 3.2 W is reached at 160 GHz with 34.66 dB gain and output power greater than 1 W from 152 to 168 GHz.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3