Suicide Bomb Attack Identification and Analytics through Data Mining Techniques

Author:

Ferooz Faria,Hassan Malik TahirORCID,Awan Mazhar JavedORCID,Nobanee HaithamORCID,Kamal Maryam,Yasin Awais,Zain Azlan MohdORCID

Abstract

Suicide bomb attacks are a high priority concern nowadays for every country in the world. They are a massively destructive criminal activity known as terrorism where one explodes a bomb attached to himself or herself, usually in a public place, taking the lives of many. Terrorist activity in different regions of the world depends and varies according to geopolitical situations and significant regional factors. There has been no significant work performed previously by utilizing the Pakistani suicide attack dataset and no data mining-based solutions have been given related to suicide attacks. This paper aims to contribute to the counterterrorism initiative for the safety of this world against suicide bomb attacks by extracting hidden patterns from suicidal bombing attack data. In order to analyze the psychology of suicide bombers and find a correlation between suicide attacks and the prediction of the next possible venue for terrorist activities, visualization analysis is performed and data mining techniques of classification, clustering and association rule mining are incorporated. For classification, Naïve Bayes, ID3 and J48 algorithms are applied on distinctive selected attributes. The results exhibited by classification show high accuracy against all three algorithms applied, i.e., 73.2%, 73.8% and 75.4%. We adapt the K-means algorithm to perform clustering and, consequently, the risk of blast intensity is identified in a particular location. Frequent patterns are also obtained through the Apriori algorithm for the association rule to extract the factors involved in suicide attacks.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference62 articles.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on Combined-CNN Model for Classification of Terrorism Text;2024 7th International Conference on Advanced Algorithms and Control Engineering (ICAACE);2024-03-01

2. Multi-agent modeling of crowd dynamics under bombing attack cases;Frontiers in Physics;2024-01-10

3. Suicide Bombing, Investigation;Reference Module in Social Sciences;2024

4. Enhanced Malware Family Classification via Image-Based Analysis Utilizing a Balance-Augmented VGG16 Model;Traitement du Signal;2023-10-30

5. Data Mining in the Analysis of Tree Harvester Performance Based on Automatically Collected Data;Forests;2023-01-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3