High Gain SIW H-Plane Horn Antenna with 3D Printed Parasitic E-Plane Horn

Author:

Huang ShengORCID,Chan King Yuk,Wang Yu,Ramer Rodica

Abstract

Substrate integrated waveguide (SIW) technology that combines 3D and 2D structures has been successfully utilized due to its notable advantages, including in its application to H-plane horn antennas. As this type of antenna is commonly constructed on thin substrates, the E-plane radiation pattern is always wide, thereby limiting the achievable gain performance. In this work, we propose an approach that incorporates 3D printed horns on a prefabricated SIW H-plane horn antenna to successfully narrow the E-plane radiation pattern, thereby improving the gain performance. The proposed E-plane horn is designed at the aperture of the original H-plane horn, providing a smooth and continuous wave transition from the thin substrate to the end-fire direction. This approach improves the directional radiation performance significantly and reduces fabrication time and associated difficulties as the parasitic structures are simply attached to the SIW horn, without the requirement of redesigning or refabricating the original antenna. From 20 to 25 GHz, an optimized prototype shows excellent performance. At 22.7 GHz, it exhibits 35° and 33° for the E- and H-plane half-power beamwidths (HPBWs), with corresponding side-lobe levels (SLLs) of −23 dB and −15 dB. The present research reveals that the proposed design presents high feasibility and a reduced demand for high-precision manufacturing processes at a lower cost, concomitantly providing an effective means to further improve on the radiation characteristics.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference32 articles.

1. Review of substrate-integrated waveguide circuits and antennas

2. MTM- and SIW-Inspired Bowtie Antenna Loaded with AMC for 5G mm-Wave Applications

3. MEMS-loaded millimeter wave frequency reconfigurable quasi-Yagi dipole antenna;Yang;Asia-Pac. Microw. Conf. Proc. APMC,2011

4. Novel beam design for compact RF MEMS series switches;Chan;Asia-Pac. Microw. Conf. Proc. APMC,2007

5. Beam-Scanning Antenna Based on Near-Electric Field Phase Transformation and Refraction of Electromagnetic Wave Through Dielectric Structures

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3