Floating Photovoltaic Systems Coupled with Pumped Hydroplants under Day-Ahead Electricity Market Conditions: Parametric Analysis

Author:

Barbón Arsenio1ORCID,Aparicio-Bermejo Javier2,Bayón Luis3ORCID,Georgious Ramy1ORCID

Affiliation:

1. Department of Electrical Engineering, University of Oviedo, 33003 Oviedo, Spain

2. Business Development Iberia Northwest Area, Enel Green Power, 28014 Madrid, Spain

3. Department of Mathematics, University of Oviedo, 33003 Oviedo, Spain

Abstract

The intermittent nature of the solar resource together with the fluctuating energy demand of the day-ahead electricity market requires the use of efficient long-term energy storage systems. The pumped hydroelectric storage (PHS) power plant has demonstrated its technical and commercial viability as a large-scale energy storage technology. The objective of this paper is to analyse the parameters that influence the mode of operation in conjunction with a floating photovoltaic (FPV) power plant under day-ahead electricity market conditions. This work proposes the analysis of two parameters: the size of the FPV power plant and the total process efficiency of the PHS power plant. Five FPV plant sizes are analysed: 50% (S1), 100% (S2), 150% (S3), 350% (S4) and 450% (S5) of the PHS plant. The values of the total process efficiency parameter analysed are as follows: 0.77 for old PHS plants, and 0.85 for more modern plants. The number of daily operating hours of the PHS plant is 4 h. These 4 h of operation correspond to the highest prices on the electricity market. The framework of the study is the Iberian electricity market and the Alto Rabagão dam (Portugal). Different operating scenarios are considered to identify the optimal size of the FPV power plant. Based on the measured data on climatic conditions, an algorithm is designed to estimate the energy production for different sizes of FPV plants. If the total process efficiency is 0.85, the joint operation of both plants with FPV plant sizes S2 and S3 yields a slightly higher economic benefit than the independent mode of operation. If the total process efficiency is 0.77, there is always a higher economic benefit in the independent operation mode, irrespective of the size of the FPV plant. However, the uncertainty of the solar resource estimation can lead to a higher economic benefit in the joint operation mode. Increasing the number of operating hours of the PHS plant above 4 h per day decreases the economic benefit of the joint operation mode, regardless of the total process efficiency parameter and the size of the FPV plant. As the number of operating hours increases, the economic benefit decreases. The results obtained reveal that the coupling of floating photovoltaic systems with pumped hydroelectric storage power plants is a cost-effective and reliable alternative to provide sustainable energy supply security under electricity market conditions. In summary, the purpose of this work is to facilitate decision making on the mode of operation of both power plants under electricity market conditions. The case studies allow to find the optimal answer to the following practical questions: What size does the FPV power plant have to be in order for both plants to be better adapted to the electricity market? What is the appropriate mode of operation of both plants? What is the economic benefit of changing the turbine pump of the PHS power plant? Finally, how does the installation of the FPV power plant affect the water volume of the upper reservoir of the PHS plant? Knowledge of these questions will facilitate the design of FPV power plants and the joint operation of both plants.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference62 articles.

1. (December, January 30). The Paris Agreement. Paris Agreement. Proceedings of the Conference of the Parties to the United Nations Framework Convention on Climate Change (21st Session), Paris, France.

2. Bouckaert, S., Pales, A.F., McGlade, C., Remme, U., Wanner, B., Varro, L., D’Ambrosio, D., Spencer, T., Abergel, T., and Arsalane, Y. (2023, April 10). Net Zero by 2050: A Roadmap for the Global Energy Sector. International Energy Agency (IEA). Available online: https://www.iea.org/reports/net-zero-by-2050.

3. BPIE (2023, January 27). 9 Ways to Make the Energy Performance of Buildings Directive More Effective. Available online: http://bpie.eu/wp-content/uploads/2016/08/EPBD-paper_Eng.pdf.

4. (2023, January 27). BP Statistical Review of World Energy. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf.

5. A comparative study between racking systems for photovoltaic power systems;Silva;Renew. Energy,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3