Single-Image Defogging Algorithm Based on Improved Cycle-Consistent Adversarial Network

Author:

Zhang Junkai1,Sun Xiaoming1ORCID,Chen Yan1,Duan Yan1,Wang Yongliang1

Affiliation:

1. School of Measurement-Control Technology and Communications Engineering, Harbin University of Science and Technology, Harbin 150080, China

Abstract

With the wave of artificial intelligence and deep learning sweeping the world, there are many algorithms based on deep learning for image defog research. However, there is still serious color distortion, contrast reduction, incomplete fog removal, and other problems. To solve these problems, this paper proposes an improved image defogging network based on the traditional cycle-consistent adversarial network. We add the self-attention module and atrous convolution multi-scale feature fusion module on the basis of the traditional CycleGAN network to enhance the feature extraction capability of the network. The perceptual loss function is introduced into the loss function of the model to enhance the texture sense of the generated image. Finally, by comparing several typical defogging algorithms, the superiority of the defogging model proposed in this paper is proved qualitatively and quantitatively. Among them, on the indoor synthetic data set, the Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measurement (SSIM) of the network designed by us can reach 23.22 and 0.8809, respectively. On the outdoor synthetic data set, the PSNR and SSIM of our designed network can be as high as 25.72 and 0.8859, respectively. On the real data set, the PSNR and SSIM of our designed network can reach 21.02 and 0.8166, respectively. It is proved that the defogging network in this paper has good practicability and universality.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference48 articles.

1. Study and comparison of color models for automatic image analysis in irrigation management applications;Agric. Water Manag.,2015

2. Optimal color space selection method for plant/soil segmentation in agriculture;Comput. Electron. Agric.,2016

3. Land-robot technologies: The integration of cognitive systems in military and defense;Sanaullah;NDC E-J.,2022

4. Intelligent imaging in nuclear medicine: The principles of artificial intelligence, machine learning and deep learning;Currie;Semin. Nucl. Med.,2021

5. Multispectral transmission map fusion method and architecture for image dehazing;Kumar;IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,2019

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3