A 6G-Enabled Lightweight Framework for Person Re-Identification on Distributed Edges

Author:

Peng Xiting12,Wang Yichao1,Zhang Xiaoyu23,Yang Haibo1ORCID,Tang Xiongyan4,Bai Shi1

Affiliation:

1. School of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, China

2. Shenyang Key Laboratory of Information Perception and Edge Computing, Shenyang University of Technology, Shenyang 110870, China

3. School of Artificial Intelligence, Shenyang University of Technology, Shenyang 110870, China

4. Research Institute, China Unicom, Beijing 100048, China

Abstract

In the upcoming 6G era, edge artificial intelligence (AI), as a key technology, will be able to deliver AI processes anytime and anywhere by the deploying of AI models on edge devices. As a hot issue in public safety, person re-identification (Re-ID) also needs its models to be urgently deployed on edge devices to realize real-time and accurate recognition. However, due to complex scenarios and other practical reasons, the performance of the re-identification model is poor in practice. This is especially the case in public places, where most people have similar characteristics, and there are environmental differences, as well other such characteristics that cause problems for identification, and which make it difficult to search for suspicious persons. Therefore, a novel end-to-end suspicious person re-identification framework deployed on edge devices that focuses on real public scenarios is proposed in this paper. In our framework, the video data are cut images and are input into the You only look once (YOLOv5) detector to obtain the pedestrian position information. An omni-scale network (OSNet) is applied through which to conduct the pedestrian attribute recognition and re-identification. Broad learning systems (BLSs) and cycle-consistent adversarial networks (CycleGAN) are used to remove the noise data and unify the style of some of the data obtained under different shooting environments, thus improving the re-identification model performance. In addition, a real-world dataset of the railway station and actual problem requirements are provided as our experimental targets. The HUAWEI Atlas 500 was used as the edge equipment for the testing phase. The experimental results indicate that our framework is effective and lightweight, can be deployed on edge devices, and it can be applied for suspicious person re-identification in public places.

Funder

Natural Science Foundation of Liaoning Province

Basic scientific research Project of the Education Department of Liaoning Province

Science and Technology Plan Project of Liaoning Province

Part of National Natural Science Foundation of China

Liaoning Provincial Natural Science Foundation of China

Key project of Liaoning Provincial Department of Education

Key Project of Liaoning Provincial Department of Science and Technology

Science and Technology Project of Shenyang City

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3