An Integrated Off-Line Echo Signal Acquisition System Implemented in SoC-FPGA for High Repetition Rate Lidar

Author:

Cheng Liangliang12345,Xie Chenbo35

Affiliation:

1. Anhui Province Key Laboratory of Simulation and Design for Electronic Information System, Hefei Normal University, Hefei 230601, China

2. Anhui Province Key Laboratory of Target Recognition and Feature Extraction, Hefei 237000, China

3. Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

4. Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China

5. Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China

Abstract

High repetition rate lidar is typically equipped with a low-energy, high repetition rate laser, and small aperture telescopes. Therefore, it is small, compact, low-cost, and can be networked for observation. However, its data acquisition and control functions are generally not specially designed, and the data acquisition, storage, and control programs need to be implemented on an IPC (Industrial Personal Computer), which increases the complexity and instability of the lidar system. Therefore, this paper designs an integrated off-line echo signal acquisition system (IOESAS) for lidar developed based on SoC FPGA (System-On-Chip Field Programmable Gate Array). Using a hardware–software co-design approach, the system is implemented in a heterogeneous multi-core chip ZYNQ-7020 (integrated FPGA and ARM). The FPGA implements dual-channel echo data acquisition (gated counting and hardware accumulation). At the same time, the ARM performs laser control and monitoring, laser pointing control, pulse energy monitoring, data storage, and wireless transmission. Offline data acquisition and control software was developed based on LabVIEW, which can remotely control the status of the lidar and download the echo data stored in IOESAS. To verify the performance of the data acquisition system, IOESAS was compared with the photon counting card P7882 and MCS-PCI, respectively. The test results show that they are in good agreement; the linear correlation coefficients were 0.99967 and 0.99884, respectively. IOESAS was installed on lidar outdoors for continuous detection, and the system was able to work independently and stably in different weather conditions, and control functions were tested normally. The gating delay and gating width time jitter error are ±5 ns and ±2 ns, respectively. The IOESAS is now used in several small lidars for networked observations.

Funder

Key Project of Natural Science Research in Colleges and Universities of Anhui Province

Project of Anhui Province Key Laboratory of Simulation and Design for Electronic Information System

Project of Anhui Province Key Laboratory of Target Recognition and Feature Extraction

2020 Project of Hefei Normal University Provincial Research Platform

Anhui Pro-vincial Quality Engineering Project of Higher Education Institutions

The Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3