FASTune: Towards Fast and Stable Database Tuning System with Reinforcement Learning

Author:

Shi Lei123ORCID,Li Tian2,Wei Lin1ORCID,Tao Yongcai2,Li Cuixia1,Gao Yufei13ORCID

Affiliation:

1. School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou 450002, China

2. School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China

3. Songshan Lab, Zhengzhou 450046, China

Abstract

Configuration tuning is vital to achieving high performance for a database management system (DBMS). Recently, automatic tuning methods using Reinforcement Learning (RL) have been explored to find better configurations compared with database administrators (DBAs) and heuristics. However, existing RL-based methods still have several limitations: (1) Excessive overhead due to reliance on cloned databases; (2) trial-and-error strategy may produce dangerous configurations that lead to database failure; (3) lack the ability to handle dynamic workload. To address the above challenges, a fast and stable RL-based database tuning system, FASTune, is proposed. A virtual environment is proposed to evaluate configurations which is an equivalent yet more efficient scheme than the cloned database. To ensure stability during tuning, FASTune adopts an environment proxy to avoid dangerous configurations. In addition, a Multi-State Soft Actor–Critic (MS-SAC) model is proposed to handle dynamic workloads, which utilizes the soft actor–critic network to tune the database according to workload and database states. The experimental results indicate that, compared with the state-of-the-art methods, FASTune can achieve improvements in performance while maintaining stability in the tuning.

Funder

National Key Technologies R&D Program

Key Project of Public Benefit in Henan Province of China

Nature Science Foundation of China

Key Scientific Research Projects of Colleges and Universities in Henan Province

Key Project of Collaborative Innovation in Nanyang

Key Technology Project of Henan Province of China

Research Foundation for Advanced Talents of Zhengzhou University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3