A Hierarchical Clustering Obstacle Detection Method Applied to RGB-D Cameras

Author:

Liu Chunyang12ORCID,Xie Saibao1ORCID,Ma Xiqiang12ORCID,Huang Yan1,Sui Xin13,Guo Nan1,Yang Fang12,Yang Xiaokang1

Affiliation:

1. School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang 471003, China

2. Longmen Laboratory, Luoyang 471000, China

3. Key Laboratory of Mechanical Design and Transmission System of Henan Province, Luoyang 471000, China

Abstract

Environment perception is a key part of robot self-controlled motion. When using vision to accomplish obstacle detection tasks, it is difficult for deep learning methods to detect all obstacles due to complex environment and vision limitations, and it is difficult for traditional methods to meet real-time requirements when applied to embedded platforms. In this paper, a fast obstacle-detection process applied to RGB-D cameras is proposed. The process has three main steps, feature point extraction, noise removal, and obstacle clustering. Using Canny and Shi–Tomasi algorithms to complete the pre-processing and feature point extraction, filtering noise based on geometry, grouping obstacles with different depths based on the basic principle that the feature points on the same object contour must be continuous or within the same depth in the view of RGB-D camera, and then doing further segmentation from the horizontal direction to complete the obstacle clustering work. The method omits the iterative computation process required by traditional methods and greatly reduces the memory and time overhead. After experimental verification, the proposed method has a comprehensive recognition accuracy of 82.41%, which is 4.13% and 19.34% higher than that of RSC and traditional methods, respectively, and recognition accuracy of 91.72% under normal illumination, with a recognition speed of more than 20 FPS on the embedded platform; at the same time, all detections can be achieved within 1 m under normal illumination, and the detection error is no more than 2 cm within 3 m.

Funder

National Natural Science Foundation of China

Henan science and technology research plan project

Training plan for young backbone teachers in universities of Henan Province

Basic research plan project of key scientific research projects of universities in Henan Province

Henan Science and Technology Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3