Recent Research for HZO-Based Ferroelectric Memory towards In-Memory Computing Applications

Author:

Yoo Jaewook1,Song Hyeonjun1,Lee Hongseung1,Lim Seongbin1,Kim Soyeon1,Heo Keun2,Bae Hagyoul1

Affiliation:

1. Department of Electronic Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea

2. Semiconductor Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea

Abstract

The AI and IoT era requires software and hardware capable of efficiently processing massive amounts data quickly and at a low cost. However, there are bottlenecks in existing Von Neumann structures, including the difference in the operating speed of current-generation DRAM and Flash memory systems, the large voltage required to erase the charge of nonvolatile memory cells, and the limitations of scaled-down systems. Ferroelectric materials are one exciting means of breaking away from this structure, as Hf-based ferroelectric materials have a low operating voltage, excellent data retention qualities, and show fast switching speed, and can be used as non-volatile memory (NVM) if polarization characteristics are utilized. Moreover, adjusting their conductance enables diverse computing architectures, such as neuromorphic computing with analog characteristics or ‘logic-in-memory’ computing with digital characteristics, through high integration. Several types of ferroelectric memories, including two-terminal-based FTJs, three-terminal-based FeFETs using electric field effect, and FeRAMs using ferroelectric materials as capacitors, are currently being studied. In this review paper, we include these devices, as well as a Fe-diode with high on/off ratio properties, which has a similar structure to the FTJs but operate with the Schottky barrier modulation. After reviewing the operating principles and features of each structure, we conclude with a summary of recent applications that have incorporated them.

Funder

Basic Science Research Program through the NRF of Korea funded by the Ministry of Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3