Feature Contrastive Learning for No-Reference Segmentation Quality Evaluation

Author:

Li Xiaofan1ORCID,Peng Bo1ORCID,Xie Zhuyang1

Affiliation:

1. School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu 610031, China

Abstract

No-reference segmentation quality evaluation aims to evaluate the quality of image segmentation without any reference image during the application process. It usually depends on certain quality criteria to describe a good segmentation with some prior knowledge. Therefore, there is a need for a precise description of the objects in the segmentation and an integration of the representation in the evaluation process. In this paper, from the perspective of understanding the semantic relationship between the original image and the segmentation results, we propose a feature contrastive learning method. This method can enhance the performance of no-reference segmentation quality evaluations and be applied in semantic segmentation scenarios. By learning the pixel-level similarity between the original image and the segmentation result, a contrastive learning step is performed in the feature space. In addition, a class activation map (CAM) is used to guide the evaluation, making the score more consistent with the human visual judgement. Experiments were conducted on the PASCAL VOC2012 dataset, with segmentation results obtained by state-of-the-art (SoA) segmentation methods. We adopted two meta-measure criteria to validate the efficiency of the proposed method. Compared with other no-reference evaluation methods, our method achieves a higher accuracy which is comparable to the supervised evaluation methods and partly even exceeds them.

Funder

Natural Science Foundation of Sichuan

Sichuan Science and Technology Program

Key Research and Development Program of Sichuan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3