Visual Extraction of Refined Operation Mode of New Power System Based on IPSO-Kmeans

Author:

Guo Xiaoli12ORCID,Shan Qingyu1,Zhang Zhenming12,Qu Zhaoyang12

Affiliation:

1. School of Computer Science, Northeast Electric Power University, Jilin 132012, China

2. Jilin Engineering Technology Research Center of Intelligent Electric Power Big Data Processing, Jilin 132012, China

Abstract

Due to the influence of the high proportion of renewable energy penetration, the time-varying and complex operation mode of the new power system is gradually increasing, leading to a lack of fineness and practicality of traditional operation modes. To this end, a new visual extraction method for fine operation mode of power system is proposed. Specifically, aiming at the dimensional problem between high-dimensional electrical characteristic variables, a power grid operation data preprocessing method based on maximum absolute standardization (MaxAbs) is designed. Then, in order to reduce the impact of redundant features on the accuracy of the operation mode extraction results, the Pearson correlation coefficient is introduced to optimize the feature space relationship matrix, constructing a screening model of operating mode characteristic variables based on pearson kernel principal component analysis (P_KPCA). Then, with the clustering elbow index as the constraint condition, a K-means algorithm based on improved particle swarm optimization (IPSO-Kmeans) was proposed to realize fine operation mode extraction. Finally, the experimental analysis is carried out with the actual operation data of the power grid for one year and based on uniform manifold approximation and projection (UMAP) to visualize the extraction results of the operation mode. The validity and accuracy of the proposed method are verified.

Funder

Science and Technology Development Plan Project of Jilin Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3