Cuk PFC Converter Based on Variable Inductor

Author:

Yan Tiesheng12,Chen Tong12,Huang Ao12,Chen Wenyuan12,Cao Taiqiang12

Affiliation:

1. School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, China

2. Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu 610039, China

Abstract

When the input inductor operates in discontinuous current mode (DCM), the Cuk converter can automatically achieve power factor correction (PFC) function with only a simple voltage mode control loop. However, the conventional Cuk PFC converter suffers from high intermediate capacitor voltage because of the lack of feedback of the intermediate capacitor voltage and relatively low power factor (PF). In this paper, a Cuk PFC converter using variable inductor which varies with the transient rectified input voltage is proposed to enhance the PF and reduce the intermediate capacitor voltage by injecting a controlled DC bias current into the auxiliary winding of the variable input inductor. The operating principles of the proposed Cuk PFC converter based on variable inductor are analyzed in detail, and the analysis of PF, the voltage of intermediate capacitor, and design considerations are provided. To verify the feasibility of the proposed scheme and compare the characteristics of both the traditional and proposed Cuk PFC converter, a 108W experimental prototype of the proposed converter is built and tested. The experimental results show that the proposed Cuk PFC converter can significantly enhance the PF, decrease the intermediate capacitor voltage, and increase efficiency compared with the traditional Cuk PFC converter.

Funder

National Natural Science Foundation of China

Chunhui Project Foundation of Education Department of China

Key Laboratory of Fluid and Power Machinery (Xihua University) of Ministry of Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3