Abstract
This paper presents a methodology for the design of field-programmable gate array (FPGA)-based real-time simulators (RTSs) for power electronic circuits (PECs). The programmability of the simulator results from the use of an efficient and scalable overlay architecture (OA). The proposed OA relies on a latency-insensitive design (LID) paradigm. LID consists of connecting small processing units that automatically synchronize and exchange data when appropriate. The use of such data-driven architecture aims to ease the design process while achieving a higher computational efficiency. The benefits of the proposed approach is evaluated by assessing the performance of the proposed solver in the simulation of a two-stage AC–AC power converter. The minimum achievable time-step and FPGA resource consumption for a wide range of power converter sizes is also evaluated. The proposed overlays are parametrizable in size, they are cost-effective, they provide sub-microsecond time-steps, and they offer a high computational performance with a reported peak performance of 300 GFLOPS.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献