Abstract
Generalized frequency division multiplexing (GFDM) is a waveform for the next-generation communication systems to succeed in the drawbacks of orthogonal frequency division multiplexing (OFDM). The symbols of users are transmitted with the time- and frequency-shifted versions of a prototype filter. According to filtering operation, the computational complexity and processing load are high for the devices that suffer from energy consumption. The communication systems are required to support the new generation devices that need low energy consumption and low latency issues. Motivated by such demands of the next-generation communication system, we propose a novel GFDM waveform that we call hexagonal GFDM. The contributions of the hexagonal GFDM are that it: (i) supports short transmission time based on its hexagonal time–frequency allocations; and (ii) provides low latency communication with low computational complexity manner. Furthermore, we design a transmitter and receiver structure in a less complicated way with mathematical derivation by using polyphase decomposition and Fourier transform (FT) transformation. The proposed systems are realized analytically and investigated over Rayleigh fading channel model through computer simulations.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献