Abstract
Traditionally, it has been assumed that the compression of the sign of wavelet coefficients is not worth the effort because they form a zero-mean process. However, several image encoders such as JPEG 2000 include sign-coding capabilities. In this paper, we analyze the convenience of including sign-coding techniques into wavelet-based image encoders and propose a methodology that allows the design of sign-prediction tools for whatever kind of wavelet-based encoder. The proposed methodology is based on the use of metaheuristic algorithms to find the best sign prediction with the most appropriate context distribution that maximizes the resulting sign-compression rate of a particular wavelet encoder. Following our proposal, we have designed and implemented a sign-coding module for the LTW wavelet encoder, to evaluate the benefits of the sign-coding tool provided by our proposed methodology. The experimental results show that sign compression can save up to 18.91% of bit-rate when enabling sign-coding capabilities. Also, we have observed two general behaviors when coding the sign of wavelet coefficients: (a) the best results are provided from moderate to high compression rates; and (b) the sign redundancy may be better exploited when working with high-textured images.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference27 articles.
1. A new, fast, and efficient image codec based on set partitioning in hierarchical trees
2. ISO/IEC 15444-1:2019. Information technology—JPEG 2000 Image Coding System—Part 1: Core Coding Systemhttps://www.iso.org/standard/78321.html
3. High performance scalable image compression with EBCOT