A General Model for the Design of Efficient Sign-Coding Tools for Wavelet-Based Encoders

Author:

López-Granado Otoniel MarioORCID,Martínez-Rach Miguel OnofreORCID,Martí-Campoy AntonioORCID,Cruz-Chávez Marco AntonioORCID,Malumbres Manuel PérezORCID

Abstract

Traditionally, it has been assumed that the compression of the sign of wavelet coefficients is not worth the effort because they form a zero-mean process. However, several image encoders such as JPEG 2000 include sign-coding capabilities. In this paper, we analyze the convenience of including sign-coding techniques into wavelet-based image encoders and propose a methodology that allows the design of sign-prediction tools for whatever kind of wavelet-based encoder. The proposed methodology is based on the use of metaheuristic algorithms to find the best sign prediction with the most appropriate context distribution that maximizes the resulting sign-compression rate of a particular wavelet encoder. Following our proposal, we have designed and implemented a sign-coding module for the LTW wavelet encoder, to evaluate the benefits of the sign-coding tool provided by our proposed methodology. The experimental results show that sign compression can save up to 18.91% of bit-rate when enabling sign-coding capabilities. Also, we have observed two general behaviors when coding the sign of wavelet coefficients: (a) the best results are provided from moderate to high compression rates; and (b) the sign redundancy may be better exploited when working with high-textured images.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference27 articles.

1. A new, fast, and efficient image codec based on set partitioning in hierarchical trees

2. ISO/IEC 15444-1:2019. Information technology—JPEG 2000 Image Coding System—Part 1: Core Coding Systemhttps://www.iso.org/standard/78321.html

3. High performance scalable image compression with EBCOT

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3