A Low-Cost Current Sensor Based on Semi-Cylindrical Magnetostrictive Composite

Author:

Xu Shaoyi,Peng Qiang,Xing Fangfang,Xue Hongyu,Sun Junwen,Ma Lei,Li MingORCID

Abstract

This paper presents the design, fabrication, and characterization of a compact current sensor based on magnetostrictive composites and resistance strain gauges. Firstly, we designed three kinds of current sensors with different structures, in which the shape of the giant magnetostrictive material (GMM) was cuboid, cylindrical, and semi-cylindrical. A set of finite element method (FEM) simulations were performed to qualitatively guide the design of three prototypes of the current sensor. It was determined that the most ideal shape of the GMM was semi-cylindrical. Secondly, Terfenol-D (TD) powder and epoxy resin were mixed to prepare magnetostrictive composites. In this paper, magnetostrictive composites with different particle size ranges and mass ratio were prepared and tested. The results show that the magnetostrictive composites had the best performance when the particle size range was 149–500 μm and the mass ratio of epoxy resin to TD powder was 1:5. Finally, this paper tested the performance of the sensor. The sensitivity, repeatability, and linear working range of the sensor reached 0.104 με/A, 2.51%, and 100–900 A respectively, when only 0.31 g of TD powder was employed. This means that current measurement with low cost, high sensitivity, and wide range was realized.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference17 articles.

1. Research on photoelectric current transformer in power system;Wang;Autom. Electr. Power Syst.,2000

2. Research on integrated operation of adaptive optical current transformer and protection;Li;J. Chin. Electr. Eng.,2007

3. Development of optical current transformers and application to fault location systems for substations

4. Dynamic response of the output force of giant magnetostrictive materials

5. The Realization of an Artificial Magnetoelectric Heterostructure (FeCo/AlN) Micro-Beam Resonator for Ultra-High Sensitivity Magnetic Sensing Applications;Bennett,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3