Abstract
The study of the optical properties of biological tissues for a wide spectral range is necessary for the development and planning of noninvasive optical methods to be used in clinical practice. In this study, we propose a new method to calculate almost all optical properties of tissues as a function of wavelength directly from spectral measurements. Using this method, and with the exception of the reduced scattering coefficient, which was obtained by traditional simulation methods, all the other optical properties were calculated in a simple and fast manner for human and pathological colorectal tissues. The obtained results are in good agreement with previous published data, both in magnitude and in wavelength dependence. Since this method is based on spectral measurements and not on discrete-wavelength experimental data, the calculated optical properties contain spectral signatures that correspond to major tissue chromophores such as DNA and hemoglobin. Analysis of the absorption bands of hemoglobin in the wavelength dependence of the absorption spectra of normal and pathological colorectal mucosa allowed to identify differentiated accumulation of a pigment in these tissues. The increased content of this pigment in the pathological mucosa may be used for the future development of noninvasive diagnostic methods for colorectal cancer detection.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献