AI Ekphrasis: Multi-Modal Learning with Foundation Models for Fine-Grained Poetry Retrieval

Author:

Jabbar Muhammad ShahidORCID,Shin JitaeORCID,Cho Jun-DongORCID

Abstract

Artificial intelligence research in natural language processing in the context of poetry struggles with the recognition of holistic content such as poetic symbolism, metaphor, and other fine-grained attributes. Given these challenges, multi-modal image–poetry reasoning and retrieval remain largely unexplored. Our recent accessibility study indicates that poetry is an effective medium to convey visual artwork attributes for improved artwork appreciation of people with visual impairments. We, therefore, introduce a deep learning approach for the automatic retrieval of poetry suitable to the input images. The recent state-of-the-art CLIP provides a way for multi-modal visual and text features matched using cosine similarity. However, it lacks shared cross-modality attention features to model fine-grained relationships. The proposed approach in this work takes advantage of strong pre-training of the CLIP model and overcomes its limitations by introducing shared attention parameters to better model the fine-grained relationship between both modalities. We test and compare our proposed approach using the expertly annotated MiltiM-Poem dataset, which is considered the largest public image–poetry pair dataset for English poetry. The proposed approach aims to solve the problems of image-based attribute recognition and automatic retrieval for fine-grained poetic verses. The test results reflect that the shared attention parameters alleviate fine-grained attribute recognition, and the proposed approach is a significant step towards automatic multi-modal retrieval for improved artwork appreciation of people with visual impairments.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3