Author:
Luo Yong,Gu Yunlong,Zhang Hao,Xu Jiayou,Qian Feng,Yang Guangli,Cui Hengrong
Abstract
Millimeter wave (mmWave) antennas for 5G communication require wide bandwidth, directional radiation patterns, low-profile design and multi-layer compatibility for module-level integration. In this paper, we introduce a method of loading shorting pins to a patch antenna to generate extra zero-modes. By merging the 2nd zero-mode, TM01 mode, 3rd zero-mode and TM20 mode in the frequency spectrum, a wide bandwidth varying from 23 to 34 GHz (relative bandwidth of 38.6%) and with a low-profile of 0.762 mm (0.07λ0, where λ0 is the wavelength at a middle frequency of 28.5 GHz) can be obtained. Based on this wideband patch antenna, a 4 × 2 antenna array is obtained with the ±40° scanning performance. Theoretical analysis, full-wave simulations and experimental performances are presented, validating the effectiveness of this method to achieve a wideband performance in a mmWave band. It can be applied to 5G communication systems using mmWave bands.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献