Abstract
Deep saliency models can effectively imitate the attention mechanism of human vision, and they perform considerably better than classical models that rely on handcrafted features. However, deep models also require higher-level information, such as context or emotional content, to further approach human performance. Therefore, this study proposes a multilevel saliency prediction network that aims to use a combination of spatial and channel information to find possible high-level features, further improving the performance of a saliency model. Firstly, we use a VGG style network with an identity block as the primary network architecture. With the help of re-parameterization, we can obtain rich features similar to multiscale networks and effectively reduce computational cost. Secondly, a subnetwork with a channel attention mechanism is designed to find potential saliency regions and possible high-level semantic information in an image. Finally, image spatial features and a channel enhancement vector are combined after quantization to improve the overall performance of the model. Compared with classical models and other deep models, our model exhibits superior overall performance.
Funder
National Key Research and Development Program
National Natural Science Foundation of China
Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences
Fundamental Research Funds for the Central Universities
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献