Abstract
As one of the typical application scenarios in the fifth generation (5G) mobile communication system, the situation of high-speed mobile communication is receiving increasing attention. The railway tunnel is a typical environment for high-speed mobile communications. Railway tunnels for high-speed trains are generally installed with leaky coaxial cables (LCXs), which can radiate and receive electromagnetic waves through slots; thus, providing communication. To evaluate the system-level performance of the LCX channel in a tunnel, we propose a modified geometrically based single-bounce multiple-input-multiple-output (GBSB-MIMO) channel model considering the effect of Doppler spread. The time-domain statistics of the channel model are studied from numerical simulations. Based on the proposed channel model, we also simulate and analyze the effects of different factors on the 5G system-level performance, including the interval of cable slots and the quantity and location of LCX.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献