A Socio-Inspired Methodology and Model for Advanced and Opportunistic Interactions between Industrial IoT Objects

Author:

Kilani RimORCID,Zouinkhi AhmedORCID,Bajic Eddy,Abdelkrim Mohamed Naceur

Abstract

The concept of the Internet of Things (IoT) is widely discussed. IoT is one of the emerging technologies that have caught the attention of many researchers. The increase in the number of exchanges of services between heterogeneous or homogeneous connected objects with the integration of social networking concepts gives rise to the concept of the Social Internet of Things (SIoT). The SIoT concept contributes to the evolution of interactions between industrial objects by improving deterministic mechanisms towards intelligent interactions. The integration of the SIoT concept into the Industrial Internet of Things (IIoT) gives rise to the Social Internet of Industrial Things (SIoIT) and plays an important role in improving system performance in Industry 4.0. In this article, we propose an innovative methodology and a model of socio-inspired interaction between industrial communicating objects inspired by sociological approaches. Thanks to this model, socialized industrial communicating objects form a community of objects, autonomously and dynamically, by exchanging messages to know each other perfectly, and service requests between objects are executed adaptively according to the principles of social interaction governed by socio-inspired strategies and conditions. The model is implemented, tested and validated in a Netlogo multi-agent system simulation environment.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference37 articles.

1. How and what to study about IoT: Research trends and future directions from the perspective of social science

2. Dynamic management of traffic signals through social IoT;Roopa;Procedia Comput. Sci.,2020

3. Toward Social Internet of Things (SIoT): Enabling Technologies, Architectures and Applications;Hassanien,2019

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3