Adaptive Neural Partial State Tracking Control for Full-State-Constrained Uncertain Singularly Perturbed Nonlinear Systems and Its Applications to Electric Circuit

Author:

Wang Hao,Liu Xiaomin,Yang Chunyu

Abstract

This paper is concerned with the adaptive neural network (NN) partial tracking control problem for a class of completely unknown multi-input multi-output (MIMO) singularly perturbed nonlinear systems possessing time-varying asymmetric state constraints. To satisfy the constraints, we utilize the state-depended transformation technique to convert the original state-constrained system to an equivalent unconstrained one, then the state constraint problem can be solved by ensuring its stability. Partial state tracking can be achieved without the violation of state constraints. The adaptive tracking controllers are designed by using singular perturbation theory and the adaptive control method, in which NNs are used to approximate unknown nonlinear functions. The ill-conditioned numerical problems lurking in the controller design process are averted and the closed-loop system stability can be guaranteed by introducing an appropriate Lyapunov function with singular perturbation parameter. Finally, a practical example is given to demonstrate the effectiveness of our proposed adaptive NN tracking control scheme.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3