An Inline V-Band WR-15 Transition Using Antipodal Dipole Antenna as RF Energy Launcher @ 60 GHz for Satellite Applications

Author:

Varshney AtulORCID,Sharma Vipul,Elfergani IssaORCID,Zebiri ChemseddineORCID,Vujicic Zoran,Rodriguez Jonathan

Abstract

This article demonstrates the design and development of WR-15 transition using an antipodal microstrip dipole antenna at a frequency of 60 GHz for space applications. An inline microstrip line to rectangular waveguide (MS-to-RWG) transition is proposed for the V-band (50–75 GHz) functioning. The RF energy is coupled and launched through an antipodal dipole microstrip antenna. Impedance matching and mode matching between the MS line and dipole are achieved by a quarter wave impedance transformer. This results in the better performance of transitions in terms of insertion loss (IL > −0.50 dB) and return loss (RL < −10 dB) for a 40.76% relative bandwidth from 55.57 GHz to 65.76 GHz. The lowest values of IL and RL at 60 GHz are −0.09 dB and −32.05 dB, respectively. A 50 μm thick double-sided etched InP substrate material is used for microstrip antipodal dipole antenna design. A back-to-back designed transition has IL > −0.70 dB and RL < −10 dB from 54.29 GHz to 64.07 GHz. The inline transition design is simple in structure, easy to fabricate, robust, compact, and economic; occupies less space because the transition size is exactly equal to the WR-15 length; and is prepared using an InP substrate with high permittivity of 12.4 and thickness of 50 μm. Thus, the devices have the lowest insertion loss value and lowest return loss (RL) value, of <−31 dB, as compared to earlier designs in the literature. Therefore, the proposed design has the lowest radiation loss (because of thickness) and highest transmission (about 97% power). Easy impedance matching using only a single-step quarter-wave transformer between the antipodal dipole antenna and 50 Ω microstrip line (avoiding the multi-sections’ demand and microstrip line’s tedious complexity) is needed. Since, when the InP dielectric substrate is inserted in WR-15, the waveguide becomes a dielectric-filled waveguide (DFWG), and its characteristics impedance reduces to 143 Ω from 505 Ω at an operating frequency of 60 GHz. In the proposed transition, no ridge waveguide or waveguide back-short is utilized in WR-15. The microstrip line did not contain any via, fence, window, screw, galvanic structure, post, etc. Hence, the transition is suitable for high-data-rate 5G communications, satellite remote sensing, missile navigation, MIC/MMIC circuits’ characterization, and mm-wave applications. The electrical equivalent model of the proposed design has been generated and validated using an RF circuit simulator and was found to have excellent matching.

Funder

European Union’s Horizon 2020 research and innovation program

FCT/MEC

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3