License Plate Detection with Attention-Guided Dual Feature Pyramid Networks in Complex Environments

Author:

Xiong Yu-Jie,Gao Yong-Bin,Zhang Jun-Qing,Ren Jian-Xin

Abstract

License plate detection plays a significant role in intelligent transportation systems. Convolutional neural networks have shown a remarkable performance and made significant progress for the detection task. Despite these outstanding achievements, license plate detection in complex environments is still a challenging task, due to the noisy background, unpredictable environments and varying shapes and sizes of the license plates. In order to improve the performance of license plate detection in complex environments, we propose a novel approach using an attention-guided dual feature pyramid and a cascaded positioning strategy. At first, the original features of images are extracted by the residual network. In order to make sure that each feature map contains higher- and lower-level semantic information, we utilize a bottom-up and a top-down pathway, respectively. Meanwhile, the proposed attention-guided dual feature pyramid network is used to receive the extracted features for a multilevel feature fusion. Our proposed attention-guided modules contain both spatial and channel attention. Attention-guided modules deduce the attention weights according to channel and spatial dimensions and multiply the calculated result with the input to obtain the refined feature maps. Then, a region proposal network is used to generate the candidate regions for the license plates. Finally, a cascaded positioning network is utilized to obtain the final locations of the license plates. To validate the effectiveness of the proposed method, we conducted a series of experiments on different public datasets. Experiments on AOLP and CCPD validated the effectiveness of our proposed method.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

ECNU special project of cultural inheritance and innovation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3