Abstract
Bradykinesia is the defining motor symptom of Parkinson’s disease (PD) and is reflected as a progressive reduction in speed and range of motion. The evaluation of bradykinesia severity is important for assessing disease progression, daily motor fluctuations, and therapy response. However, the clinical evaluation of PD motor signs is affected by subjectivity, leading to intra- and inter-rater variability. Moreover, the clinical assessment is performed a few times a year during pre-scheduled follow-up visits. To overcome these limitations, objective and unobtrusive methods based on wearable motion sensors and machine learning (ML) have been proposed, providing promising results. In this study, the combination of inertial sensors embedded in consumer smartwatches and different ML models is exploited to detect bradykinesia in the upper extremities and evaluate its severity. Six PD subjects and seven age-matched healthy controls were equipped with a consumer smartwatch and asked to perform a set of motor exercises for at least 6 weeks. Different feature sets, data representations, data augmentation methods, and ML models were implemented and combined. Data recorded from smartwatches’ motion sensors, properly augmented and fed to a combination of Convolutional Neural Network and Random Forest model, provided the best results, with an accuracy of 0.86 and an area under the curve (AUC) of 0.94. Results suggest that the combination of consumer smartwatches and ML classification methods represents an unobtrusive solution for the detection of bradykinesia and the evaluation of its severity.
Funder
Centro Internacional sobre el envejecimiento, CENIE (código 0348_CIE_6_E) Interreg V-A España-Portugal
FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献