Driving Assistance System for Ambulances to Minimise the Vibrations in Patient Cabin

Author:

Aldegheishem Abdulaziz,Alrajeh NabilORCID,Parra LorenaORCID,Romero OscarORCID,Lloret JaimeORCID

Abstract

The ambulance service is the main transport for diseased or injured people which suffers the same acceleration forces as regular vehicles. These accelerations, caused by the movement of the vehicle, impact the performance of tasks executed by sanitary personnel, which can affect patient survival or recovery time. In this paper, we have trained, validated, and tested a system to assess driving in ambulance services. The proposed system is composed of a sensor node which measures the vehicle vibrations using an accelerometer. It also includes a GPS sensor, a battery, a display, and a speaker. When two possible routes reach the same destination point, the system compares the two routes based on previously classified data and calculates an index and a score. Thus, the index balances the possible routes in terms of time to reach the destination and the vibrations suffered in the patient cabin to recommend the route that minimises those vibrations. Three datasets are used to train, validate, and test the system. Based on an Artificial Neural network (ANN), the classification model is trained with tagged data classified as low, medium, and high vibrations, and 97% accuracy is achieved. Then, the obtained model is validated using data from three routes of another region. Finally, the system is tested in two new scenarios with two possible routes to reach the destination. The results indicate that the route with less vibration is preferred when there are low time differences (less than 6%) between the two possible routes. Nonetheless, with the current weighting factors, the shortest route is preferred when time differences between routes are higher than 20%, regardless of the higher vibrations in the shortest route.

Funder

King Saud University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3