Automatic Knee Injury Identification through Thermal Image Processing and Convolutional Neural Networks

Author:

Trejo-Chavez Omar,Amezquita-Sanchez Juan P.ORCID,Huerta-Rosales Jose R.ORCID,Morales-Hernandez Luis A.ORCID,Cruz-Albarran Irving A.,Valtierra-Rodriguez MartinORCID

Abstract

Knee injury is a common health problem that affects both people who practice sports and those who do not do it. The high prevalence of knee injuries produces a considerable impact on the health-related life quality of patients. For this reason, it is essential to develop procedures for an early diagnosis, allowing patients to receive timely treatment for preventing and correcting knee injuries. In this regard, this paper presents, as main contribution, a methodology based on infrared thermography (IT) and convolutional neural networks (CNNs) to automatically differentiate between a healthy knee and an injured knee, being an alternative tool to help medical specialists. In general, the methodology consists of three steps: (1) database generation, (2) image processing, and (3) design and validation of a CNN for automatically identifying a patient with an injured knee. In the image-processing stage, grayscale images, equalized images, and thermal images are obtained as inputs for the CNN, where 98.72% of accuracy is obtained by the proposed method. To test its robustness, different infrared images with changes in rotation angle and different brightness levels (i.e., possible conditions at the time of imaging) are used, obtaining 97.44% accuracy. These results demonstrate the effectiveness and robustness of the proposal for differentiating between a patient with a healthy knee and an injured knee, having the advantages of using a fast, low-cost, innocuous, and non-invasive technology.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3