Numerical Modelling of Dynamic Electromagnetic Problems Based on the Time-Domain Finite Integration Technique

Author:

Lou Zhuochen,Wu Xiongwei,Hou Junming,Zhang Jianan,You Jianwei,Cui Tiejun

Abstract

Developing numerical methods to solve dynamic electromagnetic problems has broad application prospects. In computational electromagnetics, traditional numerical methods are commonly used to deal with static electromagnetic problems. However, they can hardly be applied in the modeling of time-varying materials and moving objects. So far, the studies on numerical methods that can efficiently solve dynamic electromagnetic problems are still very limited. In this paper, a numerical method called the time-domain finite integration technique (TDFIT) is extended to tackle this problem via the introduction of time-varying iterative coefficients. In order to validate the effectiveness of the proposed algorithm, three numerical examples are demonstrated, including two microstrip structures with a time-varying medium and a rapidly rotating structure. The numerical results reveal that the time-varying medium can induce a nonlinear spectrum shift, and the radar cross section (RCS) of a rapidly rotating structure is highly dependent on the rotating speed. The proposed algorithm opens a new avenue for the exploration of many intriguing phenomena in fundamental physics, including frequency conversion and magnetless nonreciprocity. Meanwhile, it can also lead to a wide range of promising practical applications, such as active electron devices, space-time metamaterials, and hypersonic vehicles.

Funder

Basic Scientific Center of Information Metamaterials of the National Natural Science Foundation of China

National Key Research and Development Program of China

National Natural Science Foundation of China

111 Project

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance Study of Different Evolutionary Algorithms for Coding Metasurface Design;2024 IEEE International Conference on Computational Electromagnetics (ICCEM);2024-04-15

2. Electromagnetic Self-compatibility Simulation of Air-to-ground Missiles with Multiple Antennas;2023 5th International Conference on Electronic Engineering and Informatics (EEI);2023-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3