Orientation Detection System Based on Edge-Orientation Selective Neurons

Author:

Chen Tianqi,Li Bin,Todo YukiORCID

Abstract

In this paper, we propose a mechanism of orientation detection system based on edge-orientation selective neurons. We assume that there are neurons in the V1 that can generate response to object’s edge, and each neuron has the optimal response to specific orientation in a local receptive field. The global orientation is inferred from the aggregation of local orientation information. An orientation detection system is further developed based on the proposed mechanism. We design four types of neurons for four local orientations and used these neurons to extract local orientation information. The global orientation is obtained according to the neuron with the most activation. The performance of this orientation detection system is evaluated on orientation detection tasks. From the experiment results, we can conclude that our proposed global orientation mechanism is feasible and explainable. The mechanism-based orientation detection system shows better recognition accuracy and noise immunity than the traditional convolution neural network-based orientation detection systems and EfficientNet-based orientation detection system, which have the most accuracy for now. In addition, our edge-orientation selective cell based artificial visual system can greatly save time and learning cost compared to the traditional convolution neural network and EfficientNet.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference31 articles.

1. Neurons with multiplicative interactions of nonlinear synapses;Todo;Int. J. Neural Syst.,2019

2. Medina, J. (2011). Brain Rules: 12 Principles for Surviving and Thriving at Work, Home, and School, ReadHowYouWant.

3. Fiske, S.T., and Taylor, S.E. (1991). Social Cognition, Mcgraw-Hill Book Company.

4. Sex differences in the human visual system;Vanston;J. Neurosci. Res.,2017

5. Visually cued action timing in the primary visual cortex;Namboodiri;Neuron,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3