CAPTCHA Recognition Using Deep Learning with Attached Binary Images

Author:

Thobhani Alaa,Gao Mingsheng,Hawbani AmmarORCID,Ali Safwan Taher MohammedORCID,Abdussalam Amr

Abstract

Websites can increase their security and prevent harmful Internet attacks by providing CAPTCHA verification for determining whether end-user is a human or a robot. Text-based CAPTCHA is the most common and designed to be easily recognized by humans and difficult to identify by machines or robots. However, with the dramatic advancements in deep learning, it becomes much easier to build convolutional neural network (CNN) models that can efficiently recognize text-based CAPTCHAs. In this study, we introduce an efficient CNN model that uses attached binary images to recognize CAPTCHAs. By making a specific number of copies of the input CAPTCHA image equal to the number of characters in that input CAPTCHA image and attaching distinct binary images to each copy, we build a new CNN model that can recognize CAPTCHAs effectively. The model has a simple structure and small storage size and does not require the segmentation of CAPTCHAs into individual characters. After training and testing the proposed CAPTCHA recognition CNN model, the achieved experimental results reveal the strength of the model in CAPTCHA character recognition.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ImageVeriBypasser: An image verification code recognition approach based on Convolutional Neural Network;Expert Systems;2024-06-25

2. Image-Based CAPTCHA Recognition Using Deep Learning Models;Proceedings of the Cognitive Models and Artificial Intelligence Conference;2024-05-25

3. Research on thermal safety verification code recognition based on SENet and CTC networks;2024 International Conference on Power Electronics and Artificial Intelligence;2024-01-19

4. Exploring self-supervised learning in Multiview captcha recognition;2023 IEEE 20th India Council International Conference (INDICON);2023-12-14

5. Deep Learning Based CAPTCHA Recognition Network with Grouping Strategy;Sensors;2023-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3