Investigation of Photovoltaic Grid System under Non-Uniform Irradiance Conditions

Author:

Madhukumar MithunORCID,Suresh TonseORCID,Jamil MohsinORCID

Abstract

Photovoltaic (PV) systems have recently been recognized as a leading way in the production of renewable electricity. Due to the unpredictable changes in environmental patterns, the amount of solar irradiation and cell operating temperature affect the power generated by the PV system. This paper, therefore, discusses the grid-integrated PV system to extract maximum power from the PV array to supply load requirements and the supply surplus power to the AC grid. The primary design is to have maximum power point tracking (MPPT) of the non-uniformly irradiated PV array, conversion efficiency maximization, and grid synchronization. This paper investigates various MPPT control algorithms using incremental conductance method, which effectively increased the performance and reduced error, hence helped to extract solar array’s power more efficiently. Additionally, other issues of PV grid-connected system such as network stability, power quality, and grid synchronization functions were implemented. The control of the voltage source converter is designed in such a way that PV power generated is synchronous to the grid. This paper also includes a comparative analysis of two MPPT techniques such as incremental conductance (INC) and perturb-and-observe (P&O). Extensive simulation of various controllers has been conducted to achieve enhanced efficient power extraction, grid synchronization and minimal performance loss due to dynamic tracking errors, particularly under fast-changing irradiation in Matlab/Simulink. The overall results favour INC algorithm and meet the required standards.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference24 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3