Abstract
The Industrial Internet of Things (IIoT) deploys massive communication devices for information collection and process control. Once it reaches failure, it will seriously affect the operation of the industrial system. This paper proposes a new method for multi-entity knowledge joint extraction (MEKJE) of IIoT communication equipment faults. This method constructs a multi-task tightly coupled model of fault entity and relationship extraction. We use it to implement word embedding and bidirectional semantic capture to generate computable text vectors. At the same time, a multi-entity segmentation method is proposed, which uses noise filtering to distinguish the multi-fault relationship of single corpus. We constructed a dataset of communication failures in power IIoT and conducted experiments. The experimental results show that the method performs best in tests with the Faulty Text dataset and the CLUENER dataset. In particular, the model achieves an F1 value of 78.6% in the evaluation of relationship extraction for multiple entities, and a significant improvement of 5–8% in its accuracy and recall. It enables effective mapping and accurate extraction of fault knowledge data.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献