Abstract
Utilizing electronic devices to emulate biological synapses for the construction of artificial neural networks has provided a feasible research approach for the future development of artificial intelligence systems. Until now, different kinds of electronic devices have been proposed in the realization of biological synapse functions. However, the device stability and the power consumption are major challenges for future industrialization applications. Herein, an electronic synapse of MXene/SiO2 structure-based resistive random-access memory (RRAM) devices has been designed and fabricated by taking advantage of the desirable properties of SiO2 and 2D MXene material. The proposed RRAM devices, Ag/MXene/SiO2/Pt, exhibit the resistance switching characteristics where both the volatile and nonvolatile behaviors coexist in a single device. These intriguing features of the Ag/MXene/SiO2/Pt devices make them more applicable for emulating biological synaptic plasticity. Additionally, the conductive mechanisms of the Ag/MXene/SiO2/Pt RRAM devices have been discussed on the basis of our experimental results.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献