Recognition of Drivers’ Activity Based on 1D Convolutional Neural Network

Author:

Doniec Rafał J.ORCID,Sieciński SzymonORCID,Duraj Konrad M.ORCID,Piaseczna Natalia J.ORCID,Mocny-Pachońska KatarzynaORCID,Tkacz Ewaryst J.ORCID

Abstract

Background and objective: Driving a car is a complex activity which involves movements of the whole body. Many studies on drivers’ behavior are conducted to improve road traffic safety. Such studies involve the registration and processing of multiple signals, such as electroencephalography (EEG), electrooculography (EOG) and the images of the driver’s face. In our research, we attempt to develop a classifier of scenarios related to learning to drive based on the data obtained in real road traffic conditions via smart glasses. In our approach, we try to minimize the number of signals which can be used to recognize the activities performed while driving a car. Material and methods: We attempt to evaluate the drivers’ activities using both electrooculography (EOG) and a deep learning approach. To acquire data we used JINS MEME smart glasses furnished with 3-point EOG electrodes, 3-axial accelerometer and 3-axial gyroscope. Sensor data were acquired on 20 drivers (ten experienced and ten learner drivers) on the same 28.7 km route under real road conditions in southern Poland. The drivers performed several tasks while wearing the smart glasses and the tasks were linked to the signal during the drive. For the recognition of four activities (parking, driving through a roundabout, city traffic and driving through an intersection), we used one-dimensional convolutional neural network (1D CNN). Results: The maximum accuracy was 95.6% on validation set and 99.8% on training set. The results prove that the model based on 1D CNN can classify the actions performed by drivers accurately. Conclusions: We have proved the feasibility of recognizing drivers’ activity based solely on EOG data, regardless of the driving experience and style. Our findings may be useful in the objective assessment of driving skills and thus, improving driving safety.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3