Polymorphic Memory: A Hybrid Approach for Utilizing On-Chip Memory in Manycore Systems

Author:

Lim Seung-HoORCID,Seok Hyunchul,Park Ki-WoongORCID

Abstract

The key challenges of manycore systems are the large amount of memory and high bandwidth required to run many applications. Three-dimesnional integrated on-chip memory is a promising candidate for addressing these challenges. The advent of on-chip memory has provided new opportunities to rethink traditional memory hierarchies and their management. In this study, we propose a polymorphic memory as a hybrid approach when using on-chip memory. In contrast to previous studies, we use the on-chip memory as both a main memory (called M1 memory) and a Dynamic Random Access Memory (DRAM) cache (called M2 cache). The main memory consists of M1 memory and a conventional DRAM memory called M2 memory. To achieve high performance when running many applications on this memory architecture, we propose management techniques for the main memory with M1 and M2 memories and for polymorphic memory with dynamic memory allocations for many applications in a manycore system. The first technique is to move frequently accessed pages to M1 memory via hardware monitoring in a memory controller. The second is M1 memory partitioning to mitigate contention problems among many processes. Finally, we propose a method to use M2 cache between a conventional last-level cache and M2 memory, and we determine the best cache size for improving the performance with polymorphic memory. The proposed schemes are evaluated with the SPEC CPU2006 benchmark, and the experimental results show that the proposed approaches can improve the performance under various workloads of the benchmark. The performance evaluation confirms that the average performance improvement of polymorphic memory is 21.7%, with 0.026 standard deviation for the normalized results, compared to the previous method of using on-chip memory as a last-level cache.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3