Unknown Security Attack Detection Using Shallow and Deep ANN Classifiers

Author:

Al-Zewairi MalekORCID,Almajali SufyanORCID,Ayyash MoussaORCID

Abstract

Advancements in machine learning and artificial intelligence have been widely utilised in the security domain, including but not limited to intrusion detection techniques. With the large training datasets of modern traffic, intelligent algorithms and powerful machine learning tools, security researchers have been able to greatly improve on the intrusion detection models and enhance their ability to detect malicious traffic more accurately. Nonetheless, the problem of detecting completely unknown security attacks is still an open area of research. The enormous number of newly developed attacks constitutes an eccentric challenge for all types of intrusion detection systems. Additionally, the lack of a standard definition of what constitutes an unknown security attack in the literature and the industry alike adds to the problem. In this paper, the researchers reviewed the studies on detecting unknown attacks over the past 10 years and found that they tended to use inconsistent definitions. This formulates the need for a standard consistent definition to have comparable results. The researchers proposed a new categorisation of two types of unknown attacks, namely Type-A, which represents a completely new category of unknown attacks, and Type-B, which represents unknown attacks within already known categories of attacks. The researchers conducted several experiments and evaluated modern intrusion detection systems based on shallow and deep artificial neural network models and their ability to detect Type-A and Type-B attacks using two well-known benchmark datasets for network intrusion detection. The research problem was studied as both a binary and multi-class classification problem. The results showed that the evaluated models had poor overall generalisation error measures, where the classification error rate in detecting several types of unknown attacks from 92 experiments was 50.09%, which highlights the need for new approaches and techniques to address this problem.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3