Digital Forensics Classification Based on a Hybrid Neural Network and the Salp Swarm Algorithm

Author:

Alazab MoutazORCID,Abu Khurma RubaORCID,Awajan AlbaraORCID,Wedyan MohammadORCID

Abstract

In recent times, cybercrime has increased significantly and dramatically. This made the need for Digital Forensics (DF) urgent. The main objective of DF is to keep proof in its original state by identifying, collecting, analyzing, and evaluating digital data to rebuild past acts. The proof of cybercrime can be found inside a computer’s system files. This paper investigates the viability of Multilayer perceptron (MLP) in DF application. The proposed method relies on analyzing the file system in a computer to determine if it is tampered by a specific computer program. A dataset describes a set of features of file system activities in a given period. These data are used to train the MLP and build a training model for classification purposes. Identifying the optimal set of MLP parameters (weights and biases) is a challenging matter in training MLPs. Using traditional training algorithms causes stagnation in local minima and slow convergence. This paper proposes a Salp Swarm Algorithm (SSA) as a trainer for MLP using an optimized set of MLP parameters. SSA has proved its applicability in different applications and obtained promising optimization results. This motivated us to apply SSA in the context of DF to train MLP as it was never used for this purpose before. The results are validated by comparisons with other meta-heuristic algorithms. The SSAMLP-DF is the best algorithm because it achieves the highest accuracy results, minimum error rate, and best convergence scale.

Funder

albalqa pplied university

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3