SCA-MMA: Spatial and Channel-Aware Multi-Modal Adaptation for Robust RGB-T Object Tracking

Author:

Shi Run,Wang Chaoqun,Zhao Gang,Xu Chunyan

Abstract

The RGB and thermal (RGB-T) object tracking task is challenging, especially with various target changes caused by deformation, abrupt motion, background clutter and occlusion. It is critical to employ the complementary nature between visual RGB and thermal infrared data. In this work, we address the RGB-T object tracking task with a novel spatial- and channel-aware multi-modal adaptation (SCA-MMA) framework, which builds an adaptive feature learning process for better mining this object-aware information in a unified network. For each type of modality information, the spatial-aware adaptation mechanism is introduced to dynamically learn the location-based characteristics of specific tracking objects at multiple convolution layers. Further, the channel-aware multi-modal adaptation mechanism is proposed to adaptively learn the feature fusion/aggregation of different modalities. In order to perform object tracking, we employ a binary classification module with two fully connected layers to predict the bounding boxes of specific targets. Comprehensive evaluations on GTOT and RGBT234 datasets demonstrate the significant superiority of our proposed SCA-MMA for robust RGB-T object tracking tasks. In particular, the precision rate (PR) and success rate (SR) on GTOT and RGBT234 datasets can reach 90.5%/73.2% and 80.2%/56.9%, significantly higher than the state-of-the-art algorithms.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference37 articles.

1. Visual object tracking using adaptive correlation filters;Bolme;Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2010

2. High-Speed Tracking with Kernelized Correlation Filters

3. Real-time mdnet;Jung;Proceedings of the European Conference on Computer Vision (ECCV),2018

4. Learning multi-domain convolutional neural networks for visual tracking;Nam;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016

5. Context-Aware and Occlusion Handling Mechanism for Online Visual Object Tracking

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3