Magnetic Resonance Wire Coil Losses Estimation with Finite-Difference Time-Domain Method

Author:

Giovannetti GiulioORCID,Wang Yong,Jayakumar Naveen Kumar Tumkur,Barney Jeff,Tiberi Gianluigi

Abstract

Radiofrequency (RF) coils are used to transmit and receive signals in magnetic resonance (MR) systems. Optimized RF coil design has to take into account strategies to maximize the coil performance by choosing coil sizes and geometry for achieving the best signal-to-noise ratio (SNR). In particular, coil conductor and radiative loss contributions strongly affect the SNR value, with the first mainly playing a role in low-field MR systems especially, while the second could be the dominant coil loss mechanism for high-frequency tuned coils. This paper investigates the accuracy of the finite-difference time-domain (FDTD) method for separately estimating coil conductor and radiative loss contributions. Comparison with finite element method (FEM) analysis and workbench measurements performed on a home-built coil prototype permitted us to validate the simulation results. Moreover, this research, jointly with literature data on sample-induced losses estimation, demonstrates that an FDTD-based solver permits providing an SNR model for coils with various and complicated geometries.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference23 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3