Research on Braking Efficiency of Master-Slave Electro-Hydraulic Hybrid Electric Vehicle

Author:

Wang Junyi,Zhang Tiezhu,Zhang Hongxin,Yang Jian,Zhang ZhenORCID,Meng ZewenORCID

Abstract

To address the problems of short-rangee and poor braking safety of electric vehicles, this paper proposes a master-slave electro-hydraulic hybrid passenger car drive system based on planetary gear. The system couples the electrical energy output from the electric motor with the hydraulic energy output from the electro-hydraulic pump/motor through the planetary gear. The hydraulic system is used as the auxiliary power source of the power system giving full play to the advantages of the hydraulic system and the electric system. After theoretical analysis, this paper establishes a master-slave electro-hydraulic hybrid electric vehicle (MSEHH-EV) model based on planetary gear in AMESim software. A braking energy recovery control strategy is designed with the maximum braking energy recovery efficiency as the target. Braking strength determines the switching of braking modes. Finally, comparing the certified pure electric vehicle (EV) model in AMESim, we are able to substantiate the superiority of the strategy proposed in this paper. The simulation results revealed that the battery consumption rate of the new power vehicle is reduced by 17.766%, 11.358%, and 9.427% under UDDS, NEDC, and WLTC conditions, respectively, which supports the range. At the same time, the braking distance is significantly shortened, and the maximum braking distance is shortened by 15.65 m, 21.97 m, and 21.45 m, respectively, under the three operating conditions, which improves the braking safety.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3