Code Smell Prioritization with Business Process Mining and Static Code Analysis: A Case Study

Author:

Islam Md RofiqulORCID,Al Maruf AbdullahORCID,Cerny TomasORCID

Abstract

One of the most significant impediments to the long-term maintainability of software applications is code smells. Keeping up with the best coding practices can be difficult for software developers, which might lead to performance throttling or code maintenance concerns. As a result, it is imperative that large applications be regularly monitored for performance issues and code smells, so that these issues can be corrected promptly. Resolving code smells in software systems can be done in a variety of ways, but doing so all at once would be prohibitively expensive and can be out of budget. Prioritizing these solutions are therefore critical. The majority of current research prioritizes code smells according to the type of smell they cause. This method, however, is not sufficient because of a lack of knowledge regarding the frequency of code usage and code changeability behavior. Even the most complex programs have some components that are more important than others. Maintaining the functionality of certain parts is essential since they are often used. Identifying and correcting code smells in places that are frequently utilized and subject to rapid change should take precedence over other code smells. A novel strategy is proposed for finding frequently used and change-prone areas in a codebase by combining business logic, heat map information, and commit history analysis in this study. It examines the codebase, commits, and log files of Java applications to identify business processes, heat map graphs, and severity levels of various types of code smells and their commit history. This is done in order to present a comprehensive, efficient, and resource-friendly technique for identifying and prioritizing performance throttling with also handling code maintenance concerns.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference54 articles.

1. Software Code Smell Prediction Model Using Shannon, Rényi and Tsallis Entropies

2. Investigating the impact of code smells debt on quality code evaluation

3. From Modeling to Code Generation: An Enhanced and Integrated Approach;Arogundade,2021

4. Software Architecture Degradation in Open Source Software: A Systematic Literature Review

5. A systematic literature review: Code bad smells in java source code;Gupta,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3