Design of Switched-Capacitor DC-DC Voltage-Down Converters Driven by Highly Resistive Energy Transducer

Author:

Demura Yosuke,Tanzawa Toru

Abstract

Electrostatic vibration energy transducers have a relatively high output impedance (RET) and open-circuit voltage (VIN), so that voltage-down conversion is required for sensor/RF ICs. Switched-capacitor converters are the best candidate to create small-form-factor technology and are a low-cost solution because of their capability to fully integrate into sensor/RF ICs. To design switched-capacitor voltage-down converters (SC-VDCs) with a minimum circuit area for electrostatic vibration energy transducers, two steps are required. The first step requires an optimum design of DC-DC SC-VDCs driven by high RET with a minimum circuit area, and the second step requires an optimum design of AC-DC SC-VDCs based on the first step, to minimize the converter circuit area. This paper discusses circuit analysis and design optimization aimed at the first step. Switching frequency, the number of stages and the capacitance per stage were determined as a function of RET, VIN and the output voltage (Vo) and current (Io) to the load, to achieve a minimum circuit area. The relationship between Io and the power conversion efficiency was studied as well. The performance was validated by SPICE simulation in 250 nm BCD technology. An optimum design flow was proposed to design DC-DC SC-VDCs driven by high RET with a minimum circuit area under conditions where RET, VIN, Vo and Io were given. The second design step remains as future work.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference14 articles.

1. Energy Harvesting Systems: Principles, Modeling and Applications;Kazmiersuki,2010

2. MEMS vibration electret energy harvester with combined electrodes

3. Electromechanical theory of microelectromechanical devices

4. A self-biased 5-to-60 V input voltage and 25-to-1600 µW integrated DC-DC buck converter with fully analog MPPT algorithm reaching up to 88% end-to-end efficiency;Stanzione;Proceedings of the 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers,2013

5. 20.8 a 500 nW batteryless integrated electrostatic energy harvester interface based on a DC-DC converter with 60 V maximum input voltage and operating from 1 μW available power, including MPPT and cold start;Stanzione;Proceedings of the 2015 IEEE International Solid-State Circuits Conference—(ISSCC) Digest of Technical Papers,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3