Abstract
In this work, the optical response of a high−performance 4H−SiC−based p−i−n ultraviolet (UV) photodiode was studied by means of an ad hoc numerical model. The spectral responsivity and the corresponding external photodiode quantum efficiency were calculated under different reverse biases, up to 60 V, and in the wavelength range from λ = 190 to 400 nm. The responsivity peak is R = 0.168 A/W at λ = 292 nm at 0 V and improves as bias increases, reaching R = 0.212 A/W at 60 V and λ = 298 nm. The external quantum efficiency is about 71% and 88%. The good quality of the simulation setup was confirmed by comparison with experimental measurements performed on a p−i−n device fabricated starting from a commercial 4H−SiC wafer. The developed numerical model, together with the material electrical and optical parameters used in our simulations, can be therefore explored for the design of more complex 4H−SiC−based solid−state electronic and optoelectronic devices.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献