Optimal Slip Ratio Tracking Integral Sliding Mode Control for an EMB System Based on Convolutional Neural Network Online Road Surface Identification

Author:

Shen Yanan,Mao Jingfeng,Wu Aihua,Liu Runda,Zhang Kaijian

Abstract

As the main branch of the brake-by-wire system, the electro-mechanical brake (EMB) system is the future direction of vehicle brake systems. In order to enhance the vehicle braking effect and improve driver safety, a convolutional neural network (CNN) online road surface identification algorithm and an optimal slip ratio tracking integral sliding mode controller (ISMC) combined EMB braking control strategy is proposed in this paper. Firstly, according to the quarter-vehicle model and Burckhardt tire model, the vehicle braking control theory based on the optimal slip ratio is analyzed. Secondly, using the VGG-16 CNN method, an online road surface identification algorithm is proposed. Through a comparative study under the same dataset conditions, it is verified that the VGG-16 method has a higher identification accuracy rate than the SVM method. In order to further improve the generalization ability of VGG-16 CNN image identification, data enhancement is performed on the road surface image data training set, including image flipping, clipping, and adjusting sensitivity. Then, combined with the EMB system model, an exponential approach law method-based ISMC is designed to achieve the optimal slip ratio tracking control of the vehicle braking process. Finally, MATLAB/Simulink software is used to verify the correctness and effectiveness of the proposed strategy and shows that the strategy of real-time identifying road surface conditions through vision can make the optimal slip ratio of vehicle braking control reasonably adjusted, so as to ensure that the adhesion coefficient of wheel braking always reaches the peak value, and finally achieves the effect of rapid braking.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3