An Effective Deep Learning-Based Architecture for Prediction of N7-Methylguanosine Sites in Health Systems

Author:

Tahir Muhammad,Hayat Maqsood,Khan RahimORCID,Chong Kil ToORCID

Abstract

N7-methylguanosine (m7G) is one of the most important epigenetic modifications found in rRNA, mRNA, and tRNA, and performs a promising role in gene expression regulation. Owing to its significance, well-equipped traditional laboratory-based techniques have been performed for the identification of N7-methylguanosine (m7G). Consequently, these approaches were found to be time-consuming and cost-ineffective. To move on from these traditional approaches to predict N7-methylguanosine sites with high precision, the concept of artificial intelligence has been adopted. In this study, an intelligent computational model called N7-methylguanosine-Long short-term memory (m7G-LSTM) is introduced for the prediction of N7-methylguanosine sites. One-hot encoding and word2vec feature schemes are used to express the biological sequences while the LSTM and CNN algorithms have been employed for classification. The proposed “m7G-LSTM” model obtained an accuracy value of 95.95%, a specificity value of 95.94%, a sensitivity value of 95.97%, and Matthew’s correlation coefficient (MCC) value of 0.919. The proposed predictive m7G-LSTM model has significantly achieved better outcomes than previous models in terms of all evaluation parameters. The proposed m7G-LSTM computational system aims to support the drug industry and help researchers in the fields of bioinformatics to enhance innovation for the prediction of the behavior of N7-methylguanosine sites.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3